If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-4y=0
a = 10; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*10}=\frac{0}{20} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*10}=\frac{8}{20} =2/5 $
| X+2/3=14-x/42 | | -21/4=r-4/9 | | x2−5=(x+5)(2x−1) | | x=60+-2 | | 742.55=$2.55x+$3.70 | | -21/4=r4=5 | | X+2/3=8-x/24 | | 16=a-3.9 | | 3(4-2m)=15 | | 2x-8+42=90 | | 33x+400=10.89+20x | | 6x=9x+9 | | -28+47x=207$ | | 16x^2+90-36=0 | | m-13+4m=5-7m | | 600=r(10) | | 2-5/8a=3 | | )3x-5=x+11 | | (17b-7)-4(4b+12)=-5 | | 2x=7x+6 | | y-(2y/1-5y-1/3)=y-1/3+1/2 | | 3x-11=9x+25 | | 10=6m+2S | | 5-1x=2 | | −0.55p−8=0.45p | | 144^x-6=12^5x+15 | | 2h+9=67, | | 7.3a+12=99.6 | | 11y-7,9+25y+19,6-47y+6,6=1-11y | | |9x+7|=37 | | 45=x*39 | | x=0.25=1 |